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Abstract 

The research used publicly available data to develop deep learning models to predict river gauge 
heights at unmonitored locations in Missouri. The geospatial and rainfall data for 20 different 
catchment areas of Missouri was used in tandem with the clustering and ensemble deep learning 
approaches to develop a high-performance deep learning model that efficiently captured the 
interdependencies between the time-series input data values. The models accurately predicted 
river water level values up to 4 hours ahead in the future with a correlation of greater than 0.82 
with most results having a correlation greater than 0.9. The data-based approach applied to 
develop a deep learning neural networks-based framework can assist the first responders in 
issuing timely and localized flood warnings for the safety of the general public. This 
methodology was applied to publicly available datasets obtained from the United States 
Geological Survey (USGS) and the National Weather Service (NWS). The research project was 
funded by the Missouri Department of Transportation (MoDOT) and Mid-America 
Transportation Center (MATC). 
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Executive Summary 

This research project used geospatial, river water level, and rainfall feature datasets as inputs to 
an ensemble of deep learning neural network models to predict river water levels at unmonitored 
sites. Multiple gauges from 20 different catchment locations were grouped into four clusters to 
train an ensemble of Long Short-Term Memory (LSTM) deep learning models. These four 
clusters represented the distance of the unmonitored site from existing gauges, labeled ‘Close-
Close’ (CC), ‘Close-Far’ (CF), ‘Far-Close’ (FC), and ‘Far-Far’ (FF) respectively. Geospatial 
data and sequential time series data values representing rainfall and existing river gauge data 
were used as inputs to the models to make multistep predictions at unmonitored locations as 
shown in Figure 1.  

 

 

Figure 1: Modeling Approach Overview. 

The use of ensemble learning methods to train multiple deep learning models increased the 
forecasting performance of the models as compared to a single deep learning model. Also, the 
application of the cluster-based deep learning ensemble model training methodology showcased 
a high correlation between the predicted model values and the true gauge height values. The 
correlation coefficient values for the unmonitored sites in the four clusters are 0.9948, 0.9441, 
0.9208, 0.8351 for ‘CC’, ‘CF’, ‘FC’, and ‘FF’ respectively. These accuracies are similar to 
current gauge height measurements, with sufficient detail to inform decision-makers of 
potentially hazardous flooding conditions. Unlike other modeling approaches, the models 
proposed in this study predicted correlation while making predictions at future timesteps. The 
deep learning-based model framework developed in this project is a novel methodology that did 
not exist before this project and provides significant assistance to the first responders in 
preparing for flooding events at an unmonitored site. 
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1. Literature Review 

Flooding events cause economic and personal damages to people living in the flood-prone areas 
of Missouri. Multiple studies have been conducted to calculate the penetration of floodwaters in 
proximity to gauged locations using mathematical and machine learning-based models. 
However, there is a lack of methodology in the literature that addresses the issue of calculating 
similar water levels at unmonitored locations. Various research studies in the fields of river 
gauge level monitoring, flood predictions, and neural networks-based prediction models were 
reviewed to develop a methodology to predict flash flood activity at unmonitored locations. 

Flood Susceptibility Mapping and Machine Learning 

Various modeling techniques have been applied by researchers to develop flood susceptibility 
maps using computational intelligence tools such as neural networks, genetic algorithms (GA), 
etc. The flow of the river Nile was forecasted by using an artificial neural network (ANN) based 
flood prediction model in flood-sensitive areas of Sudan (Elsafi, 2014). A hybrid autoencoder-
multilayer perceptron model was developed for flood susceptibility mapping of the flood-prone 
areas in Iran and India (Ahmadlou et al., 2020). This hybrid model relied on multiple variables to 
deliver better results as compared to a traditional multiple layer perceptron (MLP)-based model. 
A Long Short-Term Memory (LSTM)-based neural network model was trained to calculate the 
river water levels in Russian River Basin, California, USA (Han et al., 2021). The outputs of this 
hourly runoff LSTM forecasting model can be used to make short-term flood predictions for the 
selected area. Flood susceptibility maps were also developed using the convolutional neural 
networks (CNN) and recurrent neural networks (RNN) on historical flood information and 
various geospatial features (Panahi et al., 2021). Genetic Algorithm (GA) based optimization 
techniques have been adopted to optimize deep belief networks (DBN) and develop novel 
methodology to predict flash flood susceptibility in the flash flood-prone regions of Iran 
(Shahabi et al., 2021). One-dimensional (1D) and two-dimensional (2D) hydrologic flow 
computations have been conducted to calculate flood travel time and inundated areas in the 
flood-prone regions of Ohio, USA (Ghimire et al., 2020). Researchers have also used diverse sets 
of variables such as groundwater levels, depth, average wind speed, tides, etc., to apply neural 
networks-based regression models to predict flooding events in Mohawk River, New York 
(Tsakiri et al., 2018). The results from a Geographic Information Systems (GIS) simulator were 
analyzed to develop an efficient rainfall-runoff model and predict the rise in flood water levels 
more accurately (Chiari et al., 2000). Hydrologic simulation software such as River Analysis 
System (HEC-RAS) is often implemented by authorities in charge of implementing flood 
disaster mitigation plans to develop flood inundation maps of the risk-prone regions of the 
United States (US Army Corps of Engineers, 2021).  
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Ungauged Basins 

Even though there is a lack of research efforts in the field of flood forecasting for the areas 
without any river gauge installations, a few researchers have developed methodologies to address 
this issue. A regional flood frequency analysis study was conducted using the method of L-
moments and index flood to predict flood quantiles for a mid-Norway region with 26 unregulated 
catchments (Hailegeorgis & Alfredsen, 2017). Machine learning techniques such as k-fold 
validation were used to train the Long Short-Term Memory (LSTM) networks instead of relying 
on the Sacramento Soil Moisture Accounting (SAC-SMA) model to accurately capture 
catchment-level rainfall-runoff behaviors (Kratzert et al., 2019). Hydrologic similarities between 
basins were studied to estimate streamflow values and develop a rainfall-runoff model for the 
ungauged Karkheh River Basin, Iran (Choubin et al, 2019). Geospatial features such as 
Hydrological Response Unit (HRU) images were analyzed in QGIS software to study similarities 
between 33 catchments in the Western Black Sea Region of Turkey (Aytaç, 2020). Classification 
techniques such as fuzzy c-means and k-Nearest Neighbour were relied on to develop machine 
learning models to classify drainage basins and predict streamflow values in ungauged basins 
(Papageorgaki & Nalbantis, 2016).  

Most of the flash flood susceptibility mapping and warning systems methods presented in the 
literature were developed for areas that have river water level prediction infrastructure installed 
at appropriate sites. However, it is equally important to predict flash flood events for 
unmonitored locations in order to develop robust warning systems for the benefit of the residents 
of these areas. With the availability of huge volumes of geospatial and precipitation datasets, the 
predictive capabilities of deep learning neural network models can be harnessed to make high-
quality river water level predictions for such locations. In this study, an ensemble of multiple 
deep learning models was implemented to capture relationships between different variables such 
as gauge height, rainfall, etc., and develop virtual gauges for unmonitored locations in the flash 
flood-prone catchments of Missouri. The authorities responsible for flood prediction and 
management tasks can rely on the output of these virtual gauges to take necessary precautions for 
the safety of the general public.  
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2. Methodology 

The objective of this research project was to develop virtual monitors for unmonitored locations 
in flood-prone catchment areas of Missouri. Figure 2 illustrates the methodology used to collect 
data and develop deep learning-based models to predict water levels at locations without any 
water level monitoring infrastructure. The first step of the methodology involved developing the 
catchment database using ArcGIS Pro and datasets from the United States Geological Survey 
(USGS). In the second step, the flowline distances between different sets of gauges were 
calculated to identify different groups of gauges needed to develop deep learning-based 
prediction models. The water level or stage values for gauges in these groupings were obtained 
from the USGS’s data archive. Also, the daily rainfall observation values for the catchments 
were gathered from the National Weather Service (NWS) archive. Finally, the gauge and rainfall 
values were used as inputs to the deep learning models that can assist in the task of predicting 
water levels at unmonitored locations. 

 

Figure 2: Model Framework. 

Develop Catchment Database 

The geospatial data files which contain topographic maps and geographic information system 
(GIS) datasets for different parts of Missouri were downloaded from the USGS’s National Map 
data repository (The National Map, 2022). The 1-meter Digital Elevation Model (DEM) files for 
Missouri were downloaded using National Map’s data download application (USGS National 
Map, 2022). Even though the 1-meter DEM coverage is limited in some areas of the state as 
shown in Figure 3, these high-quality data files which were obtained from the light detection and 
ranging (Lidar) source are suitable for capturing the geospatial features of a location efficiently.  
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Figure 3: 1-meter DEM Coverage for Missouri. 

The goal of the study was to capture the behavior of the gauges in the state’s catchment areas to 
develop deep learning-based virtual gauges to monitor water levels at unmonitored locations. 
Once developed, these virtual gauges can provide more accurate local flood predictions for the 
area. The gauge information from the USGS National Water Dashboard’s database was also used 
to identify 50 different catchments in the state where gauges have been installed by the 
authorities to monitor river and stream water levels (USGS, 2022). Then, the DEM files for these 
50 different gauged catchment areas were uploaded to the geospatial information system (GIS) 
software such as ArcGIS Pro for visualization. These files were further processed using the 
software’s inbuilt functions to extract values of various geospatial features such as elevation, 
slope, area, perimeter, etc. for the catchments. The purple polygons in Figure 4 highlight the 
locations of such gauged catchments in Missouri. 

 



 

5 

 

 

Figure 4: Gauged Catchments in Missouri. 

Calculate Flowline Distances 

The gauges used in this study were divided into three different groups: upstream gauges, gauges 
of interest, and downstream gauges. The gauge of interest is located between the upstream and 
downstream gauges as shown in Figure 5. The development of a virtual monitor for this gauge of 
interest will provide a focused flood warning for a specified region without spending any 
resources to install and maintain an actual gauge at this location. The distance value between the 
gauges interacts differently with the other model inputs, so it is necessary to determine the 
stream distances between the gauges.  
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Figure 5: Gauge Grouping. 

Flowlines were drawn in ArcGIS Pro to calculate the polyline distance between an upstream 
gauge and a downstream gauge in a gauged catchment. Figure 6 shows a flowline drawn between 
two actively monitored gauges on Osage River near Bagnell, MO. Similar lines were drawn 
between all monitored gauges located in the catchments to extract respective polyline distances 
between them. 

 

Figure 6: Measuring Polyline Distance between Two Monitored Gauges. 

The number of catchments needed for the predictive analytics tasks in this study was reduced 
from 50 to 21 due to the lack of availability of gauge height and rainfall data for the remaining 
29 catchments. So, a total of 42 different flowlines were drawn between the upstream, gauge of 
interest, and downstream gauges which constitute 21 complete chains of gauges in the catchment 
database that originally comprised 50 gauged catchments. Later, information for one gauge of 
interest had to be removed from the database due to the limited availability of the gauge readings 
for its upstream gauge located on St. Francis River.  It is also worth noting that some gauges are 
located outside the state of Missouri as shown in Figure 7.  
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Figure 7: River Flowlines Between Monitored Gauges. 

The geodesic distances between these gauges were compiled in a tabular format using ArcGIS 
Pro and are presented in Figure 8. These upstream and downstream distances were measured in 
kilometers and were calculated using ArcGIS Pro’s ‘Calculate Geometry’ tool. The geodesic 
distance represents a more accurate distance between two points on the earth’s curved surface as 
the elevation difference between them is reflected in the calculations (ESRI, 2022). This 
proximity information enabled the development of specialized deep learning-based prediction 
models, trained to make predictions at differing distances from sponsoring input gauges. 
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Figure 8: Flowline Geodesic Distances. 

Download Gauge and Rainfall Data 

The river gauge readings for the upstream and downstream gauges were procured from the 
USGS National Water Information System after conducting the relational mapping operation 
between these waterway gauges by calculating the geodesic distances between them (USGS 
National Water Information System, 2022). The historic readings for both the upstream and 
downstream gauges were downloaded for a date range lying between September 1, 2016 and 
December 30, 2021. These data values were then resampled at 30-minute intervals using Python 
scripts to use them as inputs to the deep learning-based models. The historic readings for the 
unmonitored gauge of interests were not used as inputs to these models as this information would 
not be available to the user in the eventual scenario where a deep learning model is relied on to 
predict gauge heights at such a location. 
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The National Weather Service (NWS) Archive maintains daily rainfall data values for the 
contiguous United States. The rainfall data from September 1, 2016 - December 30, 2021 was 
obtained from the National Weather Service (NWS) archive for the catchments. The daily 
rainfall data from September 1, 2016 - June 27, 2017 was available in the point format (NWS, 
2022). The rainfall data was also available in the raster format from June 28, 2017 - December 
30, 2021 (NWS, 2022). The daily rainfall observation values were procured using the ‘Clip’ tool 
in ArcGIS Pro and were divided by 48 to obtain values at a time interval of 30 minutes. The 
complete dataset containing time series-based upstream and downstream gauges values, and 
rainfall values was used as an input to the deep learning neural networks.  

Implement Deep Learning Models 

In order to predict the gauge readings at the central gauge of interest, the readings from the 
upstream and downstream gauges were used as inputs to an ensemble of multiple Long Short-
Term Memory (LSTM) neural networks-based models. Apart from using these two model input 
features, the average localized rainfall values experienced within the catchment were also used as 
an additional feature to make such predictions. The predicted gauge height values were then 
compared with the true time series labels at the gauge of interest to evaluate the performance of 
the deep learning models. Eventually, the learning outcome of these prediction models can be 
applied to scenarios involving the task of predicting gauge height values at unmonitored 
locations. The dataset contained a total of 118,021 observations for all three features such as 
upstream gauge height, downstream gauge height, and catchment rainfall. These time series-
based data observations represented feature values at a time interval of thirty minutes. Different 
data processing techniques such as data cleaning, exploratory data analysis, data normalization, 
etc., were conducted on this multivariate dataset to prepare a suitable format for an ensemble of 
multiple LSTM-based deep learning neural networks. Figure 9 shows the framework of the 
LSTM-based deep learning neural networks implemented on the multivariate time series dataset 
to predict the gauge heights at the gauge of interest. 
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Figure 9: LSTM Deep Learning Neural Networks Framework for Gauge Height 
Predictions. 

The entire dataset was divided into two sets of training and testing datasets for analysis. 80% of 
the whole dataset constituted the training dataset and the remaining 20% of it was used as a 
testing dataset to evaluate the model performance. Also, 15% of the training dataset was allotted 
to a validation dataset to tune the parameters of the deep learning models and improve their 
prediction accuracy. 

Gauge Grouping Clusters 

Figure 10 details how each of the 20-gauge groupings of Figure 7 was partitioned into four 
different grouping clusters. These clusters were delineated by the distance between individual 
gauges within each gauge grouping. Specifically, for each gauge grouping, two distance values 
were determined: the distance between the gauge of interest and the upstream gauge and that 
between the gauge of interest and the downstream gauge. The median exhibited value for each of 
these distances was then determined with respect to all 20-gauge groupings. For each gauge 
grouping, their respective distance values were compared to these median values to assign a 
fuzzy tag describing the general proximity of the individual gauges in the grouping. For instance, 
a gauge grouping that maintained a distance between the gauge of interest and the upstream 
gauge that was less than the 20-grouping median would be assigned a ‘Close’ tag for this 
relationship. If the same grouping’s distance between the gauge of interest and the downstream 
gauge was greater than the 20-group median, a ‘Far’ tag would be assigned for this relationship. 
These tags were then determined for each of the 20-gauge groupings. A labeling mechanism 
describes these tags in the leftmost graph of Figure 10: ‘Close-Close’ (CC), ‘Close-Far’ (CF), 
‘Far-Close’ (FC), and ‘Far-Far’ (FF). Therein, the first tag describes the gauge of interest-to-
upstream gauge distance with the second tag describing the gauge of interest-to-downstream 
gauge distance. Data from gauge groupings within each cluster was then used to train respective 
models that can be used to predict the behavior of virtual gauges that would fall into the same 
cluster.  
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Figure 10: Gauge Groupings and Four Clusters. 

This clustering was completed to ease the prediction burden that would be incurred if a single 
model was used to make accurate predictions regardless of the proximity of the gauges used to 
provide input feature data. In this way, four specialized models were created, to be used in 
predicting virtual gauge heights for ‘CC’, ‘CF’, ‘FC’, and ‘FF’ scenarios, respectively. 

For each of the 4 grouping clusters with 5-gauge groupings each, 4-gauge groupings were used 
in an aggregate fashion to train an ensemble model dedicated to predictions about the grouping 
cluster. A final gauge grouping was held out from training to test the generalizability of the 
trained model to new data the model has not been trained on as shown in Figure 11. So, the 4 
novel gauge groupings were reserved to evaluate their respective grouping clusters. This 
approach simulated the application of a trained cluster ensemble to a scenario where the virtual 
gauge was desired but enabled the comparison of the model’s output to a known true gauge of 
interest values.  
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Figure 11: Gauge Groupings and Deep Learning Models. 

Long Short-Term Memory (LSTM) Deep Neural Networks 

A deep learning neural network is a mathematical model which consists of multiple layers with 
mathematical functions called neurons that process the input data values and pass the 
corresponding output information to the next layer in the network. The three different types of 
layers in a deep learning neural network are an input layer, hidden layers, and an output layer. 
The neurons in the input layer receive the input dataset and transfer the necessary information to 
the interconnected hidden layers. This information is processed within the hidden layers and its 
output is sent to the output layer of the network. Later, the final output layer generates an 
appropriate model output value for a regression task such as predicting water levels at a gauge of 
interest.  

An LSTM-based deep learning neural network was developed to predict the gauge height values 
for the gauges of interest from each cluster. Long Short-Term Memory (LSTM) networks are a 
category of recurrent neural networks that are suitable to make predictions for an input time 
series-based feature dataset. These neural networks capture the interdependencies present 
between the different time steps of a huge input dataset to generate accurate prediction results. 
These interdependencies are preserved in its network through a set of gating mechanisms that aid 
in the efficient retention and movement of critical information between different steps of a 
sequential time series dataset (laddad, 2019). The LSTM-based deep learning neural networks 
implemented in the research project used input feature values from the previous 30 timesteps (15 
hours) to predict gauge height level readings which are 8 timesteps (4 hours) ahead in the future.  

The architecture of the LSTM implemented in this study consisted of a total of 8 different layers 
arranged sequentially. The time series dataset with values for different features such as upstream 
gauge height, downstream gauge height, and average catchment rainfall was used as input to the 
initial 50-unit layer of the LSTM network as shown in Figure 12. These units represented the 
dimension of outputs and the number of parameters in the LSTM layer (Tung, 2022). A dropout 
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regularization layer was added next to help avoid overfitting (Ampadu, 2021). An overfitted 
model will perform poorly on the test dataset producing high test error values and inaccurate 
prediction results (IBM, 2021). A dropout value of 0.2 was used to randomly drop 20% of a 
layer’s output neurons to prevent overfitting while training the model with the input data values. 
This pair of a 50-unit LSTM layer and 0.2 or 20% dropout layer was repeated twice in the 
architecture of the LSTM deep neural network. The penultimate layer with 50-units passed its 
outputs to the final 1-unit ‘Dense’ layer. This ‘Dense’ layer was used to precipitate from the 
model a single-value prediction for the gauge height of the gauge of interest 4 hours ahead. 
Whilst training, this prediction value was compared to the true 4-hour ahead value from the 
physical gauge of interest to determine error and backpropagation proceedings. When applied to 
novel scenarios, the output of the model can be regarded as a prediction for a virtual gauge 
between the upstream and downstream gauges whose time-series data was passed as input to the 
deep learning model. 

 

Figure 12: LSTM Deep Learning Neural Network Architecture. 

An ensemble learning approach was implemented on the input feature dataset to train multiple 
LSTM-based deep learning models for all gauges in each cluster category. The prediction values 
from these multiple models were combined to reduce the variance of the predictions and generate 
better prediction results as compared to a single deep learning model (Brownlee, 2019). For each 
cluster, 30 identical instances of the LSTM model were trained and combined into an ensemble 
to make both an average prediction and a prediction interval about this average. This ensemble 
method was also used to mitigate the impact that initialized weights may have on the final 
prediction of a single model. Training an ensemble of models on the same data, while providing 
different weight initializations was used to reduce the overall bias these initial weights may have 
on a final solution. Further, the variance between the predictions made by individual models 
within the ensemble can be used to describe a band about the ensemble’s average prediction 
where the true value is expected to lie. 
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3. Results and Discussion 

An ensemble of LSTMs-based deep learning neural networks is trained on the time series dataset 
containing gauge height and catchment rainfall values to predict gauge height readings at virtual 
gauges located in flood-prone regions. The model outputs obtained after analyzing the aggregate 
input feature dataset are compared against the true gauge of interest values to evaluate the 
capabilities of the prediction models. The deep learning-based models assist in efficiently 
capturing the relationships between the input data feature points. Also, the application of the 
ensemble learning approach to train such models assists in making high-quality predictions with 
low generalization errors. The predicted values are compared against the true gauge readings for 
all the ‘Close-Close’ (CC), ‘Close-Far’ (CF), ‘Far-Close’ (FC), and ‘Far-Far’ (FF) gauge 
groupings to evaluate the generalization capabilities of respective gauge grouping ensembles. 

Figure 13 details the relationship between model predictions and true gauge height values for the 
novel ‘Close-Close’ (CC) gauge grouping used to test the generalizability of the trained ‘Close-
Close’ (CC) ensemble. The predicted values trace the true values very well, capturing the 
intricacies and progressions of the gauge of interest’s rise and fall in water levels. Additionally, a 
95% prediction interval about the ‘Close-Close’ (CC) ensemble’s mean predicted value is shown 
in a light-blue color shade in Figure 13. These prediction interval bounds are specified by the 
values that lie at a distance of ‘1.96σ’ above and below the mean prediction values obtained after 
training an ensemble of LSTM deep learning models. Ideally, the predicted values should lie 
between the prediction interval in order to highlight more accurate forecast results from a 
prediction model. Here, ‘σ’ represents the standard deviation of the predictions calculated by the 
30 LSTM-based deep learning models comprising the ‘Close-Close’ (CC) ensemble. Also, these 
prediction interval bounds throttle in scenarios where the ensemble models show less variability 
and display a wider range where more nonconformity between the model predictions exists. 
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Figure 13: Comparison of Predicted and True Gauge Height Values for ‘Close-Close’ (CC) 
Gauge Grouping.  

Summary statistics results for the ‘Close-Close’ (CC) ensemble’s prediction performance metrics 
are shown in Figure 14. These metrics are obtained from the application of the trained ‘Close-
Close’ (CC) ensemble to a novel gauge grouping scenario that fits the ‘Close-Close’ (CC) cluster 
classification. The mean and median absolute deviation values between the true and predicted 
values are 8.683 and 5.119 inches, respectively which means that the spectrum of the gauge 
grouping’s gauge of interest is 556.44 inches. Alternatively, it means that the difference between 
the maximum and minimum gauge height values exhibited by the gauge of interest is 556.44 
inches. This spectrum also implies that the mean and median absolute deviation relate to a 1.56% 
and 0.92% deviation from the true value when compared to the exhibited spectrum. The width of 
the generated 95% prediction interval is quite wide at 55.579 inches, on average. This width does 
not detract from the predictive capability of this ensemble as the average model prediction 
exhibits a 0.9948 correlation coefficient to the true gauge of interest gauge height. As the gauge 
of interest displays a 0.8784 correlation coefficient, on average, to upstream and downstream 
gauge heights, an increase of 0.1155 is attributable to the ensemble model. This relates to a 
13.133% increase in the correlation coefficient performance beyond the information available 
from upstream and downstream gauges directly. 
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Figure 14: ‘Close-Close’ (CC) Ensemble Summary Statistics. 

The relationship between the predicted and true gauge height values for the ‘Close-Far’ (CF) 
gauge grouping is shown in Figure 15. The predicted values trace the true values to some extent 
and still manage to capture the gauge of interest’s behavior and its underlying patterns. A 95% 
prediction interval about the ‘Close-Far’ (CF) ensemble’s mean predicted value is shown in the 
light blue color shade. While the prediction intervals generated by the ‘Close-Far’ (CF) ensemble 
also throttle to match individual model variation, this implementation of the ‘Close-Far’ (CF) 
ensemble does not exhibit as much variability as was demonstrated in the ‘Close-Close’ (CC) 
ensemble. Even though there is generally some deviation between the ensemble predicted values 
and their true-valued counterparts, the characteristic mirroring between the two sequences is still 
useful.  
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Figure 15: Comparison of Predicted and True Gauge Height Values for ‘Close-Far’ (CF) 
Gauge Grouping. 

The mean and median absolute deviation between the true and predicted values for the ‘Close-
Far’ (CF) ensemble are 4.624 and 3.679 inches, respectively as shown in Figure 16. Here, the 
spectrum of the gauge grouping’s gauge of interest is 309.36 inches. This spectrum implies that 
the mean and median absolute deviation relate to a 1.49% and 1.19% deviation from the true 
value when compared to the exhibited spectrum. This also means that a direct comparison of the 
absolute deviation values in inches is not a fair comparison. The ‘Close-Far’ (CF) ensemble’s 
prediction performance is much lower in terms of explicit deviation but the percentage of the 
gauge of interest’s spectrum these deviations comprise is relatively similar. The width of the 
95% prediction interval is narrow at 6.704 inches or 2.17% of the gauge of interest’s spectrum on 
average. The correlation coefficient value between the ensemble’s predictions and actual values 
of the gauge is 0.9441 which is an improvement of 7.694% beyond the information discernable 
from the upstream and downstream gauges directly. 
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Figure 16: ‘Close-Far’ (CF) Ensemble Summary Statistics. 

Figure 17 shows the relationship between model predictions and true gauge height values for the 
novel ‘Far-Close’ (FC) gauge grouping used to test the generalizability of the trained ‘Far-Close’ 
(FC) ensemble. The predicted values trace the true values to some extent and still succeed in 
capturing the gauge of interest’s behavior and patterns, enabling utility from this ensemble of 
models. A 95% prediction interval about the ‘Far-Close’ (FC) ensemble’s mean predicted value 
is displayed in the light blue color.  
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Figure 17: Comparison of Predicted and True Gauge Height Values for ‘Far-Close’ (FC) 
Gauge Grouping. 

The summary statistics of performance metrics for the ‘Far-Close’ (FC) ensemble shown in 
Figure 18 are derived from the application of the trained ‘Far-Close’ (FC) ensemble to a novel 
gauge grouping scenario that fits the ‘Far-Close’ (FC) cluster classification. The mean and 
median absolute deviation parameter values between the true and predicted gauge height values 
are shown to be 2.278 and 1.766 inches, respectively. The spectrum of the gauge grouping’s 
gauge of interest equals 130.92 inches. This spectrum implies that the mean and median absolute 
deviation suggest a 1.74% and 1.35% deviation from the true gauge height value when compared 
to the spectrum exhibited. The width of the 95% prediction interval is 3.804 inches or 2.91% of 
the gauge of interest’s spectrum, on average. The ensemble’s predictions demonstrate a 0.9208 
correlation coefficient to the actual values of the gauge which results in an improvement of 
3.605% beyond the information discernable from the upstream and downstream gauges directly. 
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Figure 18: ‘Far-Close’ (FC) Ensemble Summary Statistics. 

In the case of the ‘Far-Far’ (FF) gauge grouping, the predicted values trace the true values to 
some extent and capture the gauge of interest’s behavior and patterns very well as shown in 
Figure 19. A 95% prediction interval about the ‘Far-Far’ (FF) ensemble’s mean predicted value 
is shown in light blue color too. With some exceptions, the ‘Far-Far’ (FF) ensemble predictions 
closely trace the true gauge height values, suggesting an ability to competently generalize to a 
novel ‘Far-Far’ (FF) gauge grouping scenario. 

 



 

21 

 

 

Figure 19: Comparison of Predicted and True Gauge Height Values for ‘Far-Far’ (FF) 
Gauge Grouping. 

The mean and median absolute deviation readings between the true and predicted values are 
shown to be 3.944 and 2.738 inches, respectively for the ‘Far-Far’ (FF) ensemble as illustrated in 
Figure 20. The value of the spectrum of the gauge grouping’s gauge of interest is 260.88 inches 
which implies that the mean and median absolute deviation represent a 1.51% and 1.05% 
deviation from the true value when compared to the spectrum exhibited. The width of the 95% 
prediction interval generated is 6.337 inches or 2.43% of the gauge of interest’s spectrum, on 
average. The ensemble’s predictions have a 0.8351 correlation coefficient to the actual values of 
the gauge which showcases an improvement of 8.661% beyond the information discernable from 
the upstream and downstream gauges directly. 
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Figure 20: ‘Far-Far’ (FF) Ensemble Summary Statistics. 

The ensemble of LSTM-based deep learning models is trained for different sets of ‘Close-Close’ 
(CC), ‘Close-Far’ (CF), ‘Far-Close’ (FC), and ‘Far-Far’ (FF) clusters characterized by the 
flowline distances between individual gauges within each gauge grouping. These ensemble 
models make high-quality predictions for the novel gauge of interests within the respective four 
cluster scenarios with a mean absolute deviation of 4.882 inches across the four examined 
instances. So, there is a 1.577% deviation in relation to the average spectrum across the four 
novel gauges of interest. Relatedly, the median absolute deviation across the four novel gauge 
groupings is 3.326 inches which is 1.127% of the average four-gauge spectrum. The mean 
absolute deviation for all four novel gauge groupings is greater than the median absolute 
deviation which represents a right-skewed distribution of the absolute deviation values. This 
indicates that there are some instances of larger absolute deviations that draw the mean to the 
right of the median.  

The deep learning ensemble model’s correlation coefficient value between its predicted values 
and the true gauge values is greater than the correlation coefficient value between the upstream, 
downstream gauges, and the true gauge values. So, the model demonstrates an improvement in 
the information that can be predicted about the gauge of interest, beyond what is available by a 
consideration of the upstream and downstream gauges. Also, the average correlation coefficient 
between all gauges considered in the modeling efforts is 0.677 which shows that this approach 
provides predictive information beyond what is available through simple correlation modeling. 
Moreover, these correlation coefficients are calculated in-time, so that the noted correlation 
coefficients achieved by examining other gauges could be achieved for the current time 
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step(t=now). The ensemble models developed in this study achieve the superior correlation 
coefficient values while efficiently predicting the gauge height values 8 timesteps or 4 hours into 
the future (t=now+4 hours). Here, the value of each timestep is 30 minutes. So, the models 
provide advanced knowledge of changes in the gauge height values at the gauge of interest that 
grants a head start to emergency planning and mitigation officials to notify the public of 
impending flooding scenarios. So, the accurate multi-step gauge height predictions provide 
sufficient time for the authorities to issue warnings for the safety of the general public. 

Also, the learning outcomes of the LSTM-based deep learning neural networks can be 
implemented using an unseen feature dataset to make gauge height predictions for novel gauge 
groupings. The models developed for each cluster can be used to make predictions about a 
scenario that would fit into a given cluster but lacks a gauge of interest. So, the models 
associated with each cluster can be used appropriately to create virtual gauges between an 
upstream and downstream gauge pair that can be used to make gauge height predictions without 
installing and maintaining a physical gauge at unmonitored locations. In this case, the authorities 
don’t have to allocate resources to install gauges at such locations and can rely on deep learning 
models to make water level predictions. 
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4. Conclusions 

A computational intelligence-based methodology is implemented to develop virtual gauges and 
predict river water levels for unmonitored catchment locations in Missouri. A set of 20 different 
gauges are selected and divided into different clusters based on the distances between the gauges 
in each cluster. The gauge groupings from the clusters are then used in an aggregated manner to 
implement an ensemble of Long Short-Term Memory (LSTM)-based deep learning neural 
networks. The deep learning neural networks are applied on a high-quality feature data set to 
make model predictions that are used to develop virtual gauges and predict river water levels at 
unmonitored sites. The multivariate feature dataset needed to develop the model framework is 
gathered from the data archives of reliable government agencies such as the United States 
Geological Survey (USGS) and the National Weather Service (NWS).  

The implementation of an ensemble learning approach in this research project assists in the task 
of efficiently processing and analyzing the huge volumes of data points to make accurate 
predictions. The LSTM’s parameters are also tuned accordingly to capture the intricate 
relationships between distinct data variables and develop a generalized neural network that 
generates highly accurate model outputs. These outputs are generated 4 hours into the future. 
This gives first responders the ability to use the model outputs where real-time water level 
information is needed to take advance actions for the safety of the public. Also, the authorities 
can focus on making critical flash flood precautions-related decisions without being concerned 
about the allocation of resources such as time and money to install actual gauges to predict future 
water levels at a given site. 
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5. Limitations and Future Work 

A few limitations about the research presented are worth mentioning. The models developed can 
only be employed in scenarios where upstream and downstream gauge data are available in a 
timely manner, along with rainfall data within the same rainfall catchment that the virtual gauge 
is planned for. If modified models are created that require different subsets of these input 
features, the models may be applied to a larger number of locations and scenarios. For instance, 
if a model is trained to make predictions while requiring only a downstream gauge and rainfall 
data, it may be more broadly applicable. This broadened range of application may be of 
considerable utility, even if the general accuracy is reduced given the leaner inputs to the model. 

These relatively restrictive input feature requirements also limit the number of gauge groupings 
that would be used to train the developed models. While this research included only 20-gauge 
groupings in their training and validation efforts, a less demanding input feature prerequisite 
would have allowed for the inclusion of many more gauge groupings in the training set. 
Increasing the number of gauge groupings used in training these predictive models may be 
beneficial as it could expose the models to scenarios and intricacies that are not captured by the 
current training set. While this research focused on supplying training data comprising all three 
of these critical hydrologic features, other, less demanding models may receive a boost from a 
broadened training set. 

Additionally, the models developed in this research utilized average daily rainfall data from the 
gauge of interest catchments in crafting the rainfall input feature. To do so, the daily values were 
resampled into 30-minute increments, essentially describing a steady rainfall throughout the day 
amounting to the average observed daily total for the catchment. While this provides some 
information about the rainfall experienced within a catchment, this procedure introduces a lot of 
noise and may lead to less accurate prediction results than expected from a more granular rainfall 
reading. While this effect on accuracy has not been verified, it stands to reason that the absence 
of correspondingly granular rainfall readings may impact the performance that can be achieved 
by a model making predictions at a step of only 4 hours ahead. 
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